Anti-angiogenic Cancer Therapies Targeting the VEGF Pathway

Stacey D. Finley
Department of Biomedical Engineering
University of Southern California

MSM Consortium Meeting 4 September 2013

Angiogenesis

- Formation of new capillaries from pre-existing blood vessels
- Important in developing and adult animals
- Governed by a balance of promoters and inhibitors

Physiological
Organ development
Reproduction
Wound healing
Exercise

Pathological
Cancer
Retinopathy
Arthritis
Peripheral artery disease
Stroke

•••

VEGF family: target for cancer therapy

- Vascular Endothelial Growth Factor (VEGF)
 - Potent regulator of angiogenesis
 - Acts in response to many stimuli, including hypoxia
 - Stimulates
 cell proliferation,
 migration, and
 survival
- Targeted in cancer therapies

VEGF family: prime for systems biology modeling

We have developed a molecular-detailed computational model of VEGF to predict the effect of therapeutics that target the VEGF pathway

Methods: Multi-scale whole-body compartment model

Model includes 154 ODEs to predict the concentrations of all molecular species in each compartment

Simulating VEGF-targeted therapy

Model predicts response to anti-VEGF treatment

Model predicts response to anti-VEGF treatment

Plasma VEGF initially decreases, and then rebounds above the pretreatment level

Phase I: Depletion of plasma and interstitial free VEGF

Normal Interstitial Fluid

Anti-VEGF

Anti-VEGF

Plasma

Anti-VEGF

Phase II: Recovery of plasma VEGF

Normal Interstitial Fluid

Anti-VEGF

Tumor Interstitial Fluid

Plasma

Tumor Interstitial Fluid

Quantifying the effect of treatment

- "Fold-change" of free (unbound) VEGF in the tumor
 - Compares free VEGF before treatment and VEGF at 3 weeks post-treatment
 - Fold-change = $\frac{[VEGF]_{t=3 \text{ wks}}}{[VEGF]_{t<0}}$
- Values of the fold-change:
 - = I: No change
 - > I: Free VEGF increased
 - < I: Free VEGF decreased, "therapeutic response"

Effect of receptor expression on tumor cells

Tumor VEGF is depleted following anti-VEGF treatment

Effect of tumor secretion of VEGF

Response of tumor VEGF depends on tumor microenvironment

Effect of tumor secretion of VEGF

Response of tumor VEGF depends on tumor microenvironment

Effect of tumor secretion of VEGF

Response of tumor VEGF depends on tumor microenvironment

Phase I: Depletion of plasma and interstitial free VEGF

Phase II: Recovery of plasma VEGF

Phase III: Recovery of tumor interstital VEGF

Conclusions

- The model predicts the level of tumor VEGF following anti-VEGF treatment
- Anti-VEGF treatment robustly decreases interstitial VEGF for most tumor parameters
- The model predicts that anti-VEGF therapy may have countertherapeutic effect for some tumors
- Clinical applications:
 - Anti-VEGF mechanism of action
 - Personalized medicine

Acknowledgements

Prof. Aleksander Popel

Systems Biology Laboratory
Lawrence Chu
Esak Lee
Kerri-Ann Norton
Niranjan Pandey
Spyros Stamatelos

Lab Alumni Manjima Dhar Marianne Stefanini Phillip Yen

This work was supported by: NIH R01 CA138264, F32 CA154213, and the UNCF/Merck Science Initiative

Anti-angiogenic Cancer Therapies Targeting the VEGF Pathway

